Presented by: Hervé Batard

Aircraft noise reduction : AIRBUS industrial needs in terms of new materials for nacelle liners

Journées scientifiques de l’ONERA - January 16th, 2003
Summary

• Noise & aircraft design

• Propulsion noise reduction
 ‣ Low noise configurations and flight procedures
 ‣ Engine source
 ‣ Nacelle geometry and liners

• Liner impedance requirements

• Conclusion
Aircraft noise:
A complex mix of different sources

• **Take-off: Jet & Fan**

• **Approach: Fan & airframe**
Long Range aircraft sensitivity to noise sources

Departure noise

Noise of a typical 1990s engine

Jet
Airframe
Inlet fan
Aft fan

Jet
Airframe
Inlet fan
Aft fan

Compressor
Fan
Jet
Turbine & Combustor

Turbine & combustion

$\frac{\Delta \text{EPNL}_{\text{AIRCRAFT}}}{\Delta \text{EPNL}_{\text{SOURCE}}}$
Noise: An integral part of the design process
Noise reduction results from complete aircraft optimisation

- Low speed performance
- Airframe noise
- Noise abatement procedures
- Nacelle attenuation
- Engine noise

© Airbus 2002 Computer Graphics by I3M
Summary

• Noise & aircraft design

• Propulsion noise reduction
 ‣ Low noise configurations and flight procedures
 ‣ Engine source
 ‣ Nacelle geometry and liners

• Liner impedance requirements

• Conclusion
Low noise configurations

Masked sources
- inlet fan
- combustion
- turbine

Masked sources
- inlet & aft fan
- compressor
- combustion
- turbine
Engine noise reduction technologies

- Integrated Fan Design
- UHBR Fan
- LP Compressor
- ANTLE & High Speed LP Turbines
- Low Noise Fan Nozzle
- Low Noise Core Nozzle w/ internal/external Plug
- Different Treated Plug Technologies
- HF Treated Nozzle
- Active Stators
Nacelle noise reduction technologies

- Negatively Scarfed Intake
- Improved Impedance Liner
- 0 Splice Liner
- Intake Lip Liner
- Adaptive Liner
- Active Wall-Mounted System
- Exhaust Splitters (radial or circum.)
Summary

• Noise & aircraft design

• Propulsion noise reduction
 ‣ Low noise configurations and flight procedures
 ‣ Engine source
 ‣ Nacelle geometry and liners

• Liner impedance requirements

• Conclusion
Engine noise is a complex mix of broadband noise and tones
Assessment of design conditions

Radiation-Frequency Analysis of Noise emergence
(U/S fan case)
Computation of optimal impedances

Optimal acoustic impedances

- **APPROACH Optimal resistance**
- **APPROACH Optimal reactance**
- **SIDELINE BSN (Energy on m=n+/-2p) Opt. R**
- **SIDELINE BSN (Energy on m=n+/-2p) Opt. X**
- **SIDELINE BSN (Modal equidistribution) Opt. R**
- **SIDELINE BSN (Modal equidistribution) Opt. X**
- **SIDELINE BSN (Energy on m=n) Opt. R**
- **SIDELINE BSN (Energy on m=n) Opt. X**

APPROACH 1, 2, 3 and 4BPF

SIDELINE BSN
Possible liner candidates

Non linear SDOF liner: Reflective back skin + honeycomb + perforated face sheet

=> Features: non linear, sensitive to flow, weak efficiency bandwidth, easy to build

Linear SDOF liner: Reflective back skin + honeycomb + microporous face sheet

=> Features: linear, not sensitive to flow, better efficiency bandwidth

DDOF liner: Reflective back skin + honeycomb + micro porous septum + honeycomb + face sheet (perforate or micro porous)

=> Features: large efficiency bandwidth, difficult to build
Industrial needs

In some cases, classical liners are not able to reach all optimum impedance targets together.

Hence, there is a need to investigate new type of liners and/or new materials to improve noise reduction.

Porous materials remain good candidates!
Summary

• Noise & aircraft design

• Propulsion noise reduction
 ‣ Low noise configurations and flight procedures
 ‣ Engine source
 ‣ Nacelle geometry and liners

• Liner impedance requirements

• Conclusion
Conclusion

• Developing even quieter aircraft is necessary to ensure air transport sustainable growth

• Novel and powerful noise reduction means are needed especially to attenuate engine noise

• Limitation of current acoustic liners are well known and there is a need for improved technologies

• New materials should be investigated and porous materials are seen by AIRBUS as one of promising ways
This document and all information contained herein is the sole property of AIRBUS S.A.S. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof.