Presented by
Alain Joselzon

for the COPAC Convention on Air Transport and Environment

Reducing Noise, Fuel Consumption and Emissions

A vision, turned into reality, projecting towards the future

Madrid, 14 February 2008
Contents & Summary

• Introduction
• Aviation is Technology…partly…
• Technology: source of environmental progress…
• …even if interdependencies and trade-offs exist
• …and Aviation is Operations
• Global vision, integration, and cooperation of all actors are key to prepare the future
• Conclusion
• Introduction

• Aviation *is* Technology…partly…

• Technology: source of environmental progress…

• …even if interdependencies and trade-offs exist

• …and Aviation *is* Operations

• Global vision, integration, and cooperation of all actors are key to prepare the future

• Conclusion
Introduction - Aviation today

• A worldwide safe, highly performing mass transportation system.
 ‣ Accessible, affordable and used by an increasing majority,
 ‣ Indispensable vector of multiple economic and social activities
• An easy target
 ‣ Despite unmatched improvement records, resulting from the sector’s continuous quest for perfection (safety, reliability, cost and performance – including fuel burn reduction)
 – Every achievement is taken for granted
 – High expectations of technology-related progress
 • Extensive R&D programmes that require huge investments to support needed technology and product development
 • Environmental dimension at the top of company and product requirements, to meet to-day’s & to-morrow’s challenges
 ‣ A high traffic growth sector, making it more visible
• Airbus is on its way towards an eco-efficient enterprise through its full range of activities – ISO14001 certified (sites and products throughout the whole life cycle)
Contents & Summary

• Introduction

• **Aviation *is* Technology…partly…**
 • Technology: source of environmental progress…
 • …even if interdependencies and trade-offs exist
 • …and Aviation *is* Operations

• Global vision, integration, and cooperation of all actors are key to prepare the future

• Conclusion
Aviation is Technology…partly…

- **Strong Technology incentive resulting from high requirements**
 - Complex technical products - very high reliability and safety standards
 - Multi-disciplinary technical domains, multiple criteria to integrate, sophisticated design & optimisation tools, test & validation processes
 - Relying on top expertise in all domains and very resource-intensive R&D activities (time, expertise, costs)

- **Very sensitive to operations**
 - Meteorological and flight conditions - Operational procedures
 - Air traffic management - Infrastructure and Land use Planning

- **Very dependent on socio-economic context**
 - Fuel price, high competition among manufacturers and airlines, small profit margins

⇒ every new product only worth developing if it brings a significant improvement step: mature technologies selected and integrated in line with product requirements and overall optimisation
• Introduction

• Aviation *is* Technology...partly...

• **Technology: source of environmental progress**...

 • ...even if interdependencies and trade-offs exist

 • ...and Aviation *is* Operations

• Global vision, integration, and cooperation of all actors are key to prepare the future

• Conclusion
Propulsion System high performance design prospects

Innovative Turbofan Architecture
• Geared Turbo Fan
• Counter-Rotating Fans

Counter-Rotating Propfan Engines
By Pass Ratio up to 80 ↔ open Rotor technology
Structural Weight Reductions: a considerable progress story

1990 (10-12% *)

1990 (10-12% *)

2005 (20-25%*)

2005 (20-25%*)

2010-2015 (50+%*)

2010-2015 (50+%*)

Composite wing and fuselage

est. structural weight saving ~ 15%

Composite wing and fuselage

est. structural weight saving ~ 8%

Composite + Advanced Materials

* Percentage of composites in structural weight

Composite + Advanced Materials

* Percentage of composites in structural weight

GFRP (Glass)
QFRP (Quartz)
CFRP (Carbon)
Metal
Glare

« Materials Baseline »

« Materials Baseline »

est. structural weight saving ~ 8%
Achievements: 70% reduction in fuel burn
Aircraft Fleet Fuel Efficiency Recent Trend

- ~70% Fuel Efficiency improvement up to 1990 at product level
- Continuing improvement reflected at fleet level (average > 1.5%/year)
- IATA goal to improve fuel efficiency by at least 25% by 2020 from 2005
- Driven by strong & efficient market forces, combined with inherent fast-evolving high technology, improved operational practices & ATM
- Needs sustained research & technology funding from Industry & Governments
ACARE Vision on CO₂ Reduction

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>5-10%</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td></td>
<td>20-25%</td>
</tr>
<tr>
<td>Engine</td>
<td></td>
<td>15-20%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50%</td>
</tr>
</tbody>
</table>

Potential for fast broad-based solutions to be taken into account!
Capacity growth without noise increase

Illustration: A380 and London QC departure noise

Capacity doubled at constant departure noise noise
Some Technology Advances in Acoustics

- Low noise Nacelle (Air Intake)
- Low noise Nozzle
- Low noise Landing Gear
- 0-Splice Air Intake Liner
Breakthroughs for fuel burn & emissions reduction are possible...
Fuel Saving is part of aircraft manufacturer’s core business
Synergies and Architectures: Energy generation

FUEL CELLS

Expected ~ Next Decade

- H2 Bottle Replacement
- RAT Replacement
- APU Replacement
- Kerosene
- Primary Power Supply
- Alt. fuel

Step by Step approach

TIME

Primary Power Supply

Fuel Cell System
Contents & Summary

• Introduction

• Aviation *is* Technology…partly…

• Technology: source of environmental progress…

• …even if interdependencies and trade-offs exist

• …and Aviation *is* Operations

• Global vision, integration, and cooperation of all actors are key to prepare the future

• Conclusion
Interdependencies & Trade-offs: a permanent challenge

- Low CO₂
- Low fuel burn
- Low fuel consumption
- Low Noise
- Big
- Light
- Small
- Big
- Hot
- Cold
- Cold
- Low NOₓ
- Low Maintenance Costs
Technology & Design drivers

SAFETY

Performance
Operability
Reliability
Maintainability
Durability

Product Development & Optimization

Interdependencies

Technologies

Design architectures configurations

Fuel Efficiency
Emissions
Noise
Comfort
Capacity

Environmental requirements need to be balanced with multiple other aircraft design requirements
Contents & Summary

• Introduction
• Aviation is Technology…partly…
• Technology: source of environmental progress…
• …even if interdependencies and trade-offs exist
• …and Aviation is Operations
• Global vision, integration, and cooperation of all actors are key to prepare the future
• Conclusion
Operational aspects are a major element in aviation environmental effects

• Operational improvements are crucial to environmental efficiency
 ‣ Important potential gains from operational procedures optimisation (ground, flight, maintenance)
 ‣ Important potential gains from traffic management optimisation
 ‣ Some impacts are by essence operational-dependent

• Operational improvements are often combined with / dependent on / technology developments
Operations can bring important environmental benefits, often combined with Technology - Full analysis needed

Motored Gear
- Reduced noise
- Autonomy, but …
- Not a fuel burn reduction technology (benefit on ground compensated by penalty in flight)

High Speed Towing
- Significant fuel burn benefit potential (tractor vehicle more efficient than aircraft engines at idle)

Source: WheelTug 2007

High-Speed Towing may save up to 10,000 tonnes fuel per aircraft over a 20 year A320 lifetime!
Operation: Noise abatement procedures

Major Stakes with respect to Operations, Noise & Environmental footprint

- Noise gains & rapidity of optimisation process, TOW, mission, FLEX-TOFF, traffic growth, airport capacity, airborne systems, procedure automation & crew workload, fuel burn & emissions

What Airbus is doing

- High achievements in enabling optimised and automated procedures, maximised environmental benefits and aircraft operability, minimised operator and crew workload, while maintaining or enhancing safety level

- Leading or actively involved in further research & development for enhanced optimisation capability & benefits

- Very active in international efforts to stimulate & frame progress through ICAO/CAEP
Contents & Summary

• Introduction

• Aviation *is* Technology…partly…

• Technology: source of environmental progress…

• …even if interdependencies and trade-offs exist

• …and Aviation *is* Operations

• **Global vision, integration, and cooperation of all actors are key to prepare the future**

• Conclusion
Aircraft Life Cycle: a manufacturer challenge, and a global environmental vision

Airbus fully committed & operational, with ISO 14001, Environmental Management System, Eco-Efficiency concept & policy in place.
Airbus is deeply involved in Clean Sky JTI

- Will demonstrate & validate technological breakthroughs needed to reach ACARE environmental goals for 2020 *
 - Mega-project = 1.6 Bn € - 86 partners - 7 years - Ambitious objectives - Wide scope (engines, aircraft, rotorcraft, operations, eco-design) - Actual Demonstrators to be tested - Technology Evaluator to assess realistic technological integrations/combinations
- Launched 5 February 2008
- Airbus, founding member, plays a leading role (Integrated Technology Demonstrator)

*-50% CO2 emissions, -80% NOx emissions, -50% perceived noise compared to aircraft in service in 2000
Contents & Summary

• Introduction

• Aviation *is* Technology…partly…

• Technology: source of environmental progress…

• …even if interdependencies and trade-offs exist

• …and Aviation *is* Operations

• Global vision, integration, and cooperation of all actors are key to prepare the future

• Conclusion
CONCLUSION

In summary, Airbus:

- strives to leave no stone unturned, and rationally assess what is underneath,
- works with thorough determination, full strength, and in close cooperation with all other actors, to:
 - maximise its eco-efficiency,
 - help the Industry prosper responsibly, with less and less impact on the environment, and
 - contribute to the eco-efficiency of the whole aviation sector.
As for the future, you do not have to foretell it, but to enable it.

No debes prever el porvenir sino permitirlo

Autors de Saint Exupéry

Muchas Gracias
© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.

This document and all information contained herein is the sole property of AIRBUS S.A.S.. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof.